

# The Warm & Hot Intergalactic Medium in Absorption with Constellation-X

Randall Smith with help from

Joel Bregman, Jean Cottam, Megan Donahue Ann Hornschemeier & Richard Mushotzky



#### Where is the missing ~50% of the 4% of the Universe we understand?



# Where is the missing ~50% of the 4% of the Universe we understand?





Where is the missing ~50% of the 4% of the Universe we understand?



http://www.astro.princeton.edu/~cen/PROJECTS/p2/p2.html



# Where is the missing ~50% of the 4% of the Universe we understand?

Filaments generally have T=10<sup>5</sup>-10<sup>7.5</sup> K

⇒ Two Methods to Search for the WHIM:

**Absorption**: Use background AGN to search for highly ionized O & Ne. ← this talk

**Emission**: Search for diffuse O VII, O VIII usually near but outside clusters



How Many Filaments are There?





#### Detecting the WHIM

- To find the WHIM, we need:
  - Bright background AGN
  - Dense filaments

- Ideally, we want
  - Observations of both O VII and O VIII, as well as Ne IX and Ne X.
  - Resolved absorption lines to measure temperature/turbulence in the WHIM.



#### Where are the Bright AGN?



The Brightest 50 AGN from the ROSAT Survey (generally nearby, with  $F_X(0.5-2 \text{ keV}) > 10^{-11} \text{ erg/cm}^2/\text{s}$ )



#### How Many Should Have Filaments?



Unsurprisingly, very dense filaments are rare. (Using Cen & Fang 2006, ~12/50 AGN with EW > 2 mÅ)



#### How Many Should Have Filaments?



1mÅ filaments are much easier to find. ( $\sim$ 35 filaments in  $\sim$ 20/50 AGN with EW > 1 mÅ)



#### WHIM Simulations

- Bright, distant AGN
  - $-\Gamma$ =2.0, NH = 2x10<sup>20</sup> cm<sup>-2</sup>
  - -z > 0.1



QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

- $-F_X(0.5-2 \text{ keV}) = 1.5x10^{-11} \text{ erg/cm}^2/\text{s (unabs)}$
- 3 O VII WHIM filaments
  - -z=0.01, 0.5 mÅ (N<sub>OVII</sub> = 3.50x10<sup>14</sup> cm<sup>-2</sup>)
  - -z=0.03, 1.0 mÅ (N<sub>OVII</sub> =  $6.67 \times 10^{14}$  cm<sup>-2</sup>)
  - -z=0.10, 2.0 mÅ (N<sub>OVII</sub> =  $1.16x10^{15}$  cm<sup>-2</sup>)

All 3 filaments are between 0.52-0.57 keV (21.8-23.8Å); this was chosen as the easiest place to find filaments since bright AGN are available.



#### Figure of Merit

For an unresolved line,  $F \propto R\sqrt{EA}$ So at 0.54 keV (23 Å), we have:

|           | Resolution | Eff. Area | Figure of |
|-----------|------------|-----------|-----------|
|           | (FWHM)     | $(cm^2)$  | Merit     |
| Baseline  | 270        | 8600      | 25000     |
| Kelley    | 771        | 8600      | 71500     |
| Flanagan  | ~1600      | 1000      | 50600     |
| Lillie    | 3000       | 500       | 68100     |
| Lillie #3 | 1000       | 10000     | 316200    |



#### **Baseline Detection**

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 100 ksec, EW = 2 mÅ may be detected (2-3 $\sigma$ )



#### **Baseline Detection**

QuickTime<sup>™</sup> and a TIFF (LZW) decompressor are needed to see this picture.

In 300 ksec, EW = 1 mÅ is detected (5 $\sigma$ )



#### **Baseline Detection**

QuickTime<sup>™</sup> and a TIFF (LZW) decompressor are needed to see this picture.

In 1 Msec, EW = 1 mÅ can be detected  $(7\sigma)$ 



## SEP: Kelley/GSFC

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 300 ksec, EW = 0.5 mÅ is marginal  $(4\sigma)$ 



## SEP: Flanagan/MIT

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 300 ksec, EW = 1mÅ is detected  $(6\sigma)$ 



#### SEP: Lillie/NGST & Colorado

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 300 ksec, EW = 1mÅ is detected (5 $\sigma$ )



#### SEP: Lillie Option 3

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 300 ksec, EW = 0.5 mÅ is detected ( $8\sigma$ )



#### Conclusions

|           | 100 ksec                  | 300 ksec                 | 1000 ksec    |
|-----------|---------------------------|--------------------------|--------------|
| Base      | ~2 mÅ (2σ)                | 1 mÅ (5σ)                | 1 mÅ (7σ)    |
| Kelley    | $1 \mathrm{mÅ} (5\sigma)$ | ~0.5 mÅ□                 | 0.5 mÅ (9σ)  |
| Flanagan  | ~1 mÅ (4σ)                | $1 \text{ mÅ (6\sigma)}$ | ~0.5 mÅ (4σ) |
| Lillie    | ~2 mÅ (2σ)                | ~1 mÅ (3σ)               | ~0.5 mÅ (4σ) |
| Lillie #3 | 1 mÅ (7σ)                 | 0.5 mÅ (8σ)              | 0.5 mÅ (11σ) |

This only considers detecting unresolved filaments. Higher resolution will allow better detection of any broadening.



#### Conclusions

- With ~50 300 ksec observations of bright AGN, the baseline Con-X will detect 30-50 Cen & Fang-type filaments.
- Once O VII is found, deeper observations can search for other ions.
- R ~ 1500 is needed to resolve filaments with velocity dispersion of 200 km/s, which is thought to be typical of the stronger absorption features.



#### O VII Filament Map

CDM+ $\Lambda$  Model,  $H_0$ =67,  $\Omega$ =0.30,  $\Omega_b$ =0.035,  $\Lambda$ =0.70,  $\sigma_8$ =0.90

L = 25Mpc/h,  $N_{cell} = 768^3$ 



http://www.astro.princeton.edu/~cen/PROJECTS/p2/p2.html



## SEP: Kelley/GSFC

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 100 ksec, EW = 1 mÅ is detected ( $\sim 5\sigma$ )



# SEP: Kelley/GSFC

QuickTime<sup>™</sup> and a TIFF (LZW) decompressor are needed to see this picture.

In 1 Msec, EW = 0.5 mÅ is detected ( $\sim 9\sigma$ )



## SEP: Flanagan/MIT

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 100 ksec, EW = 1 mÅ is marginal ( $\sim 4\sigma$ ). Both 2nd & 3rd orders were used.



# SEP: Flanagan/MIT

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 1 Msec, EW = 0.5 mÅ is marginal ( $\sim 4\sigma$ )



#### SEP: Lillie/NGST & Colorado

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 100 ksec, EW = 2 mÅ is marginal (2.5 $\sigma$ ).



#### SEP: Lillie/NGST & Colorado

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 1 Msec, EW = 0.5 mÅ is marginal ( $\sim 4\sigma$ )



#### SEP: Lillie Option 3

QuickTime<sup>™</sup> and a TIFF (LZW) decompressor are needed to see this picture.

In 100 ksec, EW = 1 mÅ is detected (7 $\sigma$ )



# SEP: Lillie Option 3

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

In 1 Msec, EW = 0.5 mÅ is detected ( $11\sigma$ )